'Institute of Electrical and Electronics Engineers (IEEE)'
Abstract
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.---- Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.During the last decade RISC ideas on processor architecture have become widely accepted. RISC architectures achieve significant performance advantages over CISC architectures by striving to execute one instruction per cycle. However, a traditional RISC architemre can never execute more than one instruction per cycle. Achieving further performance improvements beyond RISC depends on developing processors which fetch and execute more than one operation in each processor cycle.Final Accepted Versio