We analyze a class of piecewise linear parabolic maps on the torus, namely
those obtained by considering a linear map with double eigenvalue one and
taking modulo one in each component. We show that within this two parameter
family of maps, the set of noninvertible maps is open and dense. For cases
where the entries in the matrix are rational we show that the maximal invariant
set has positive Lebesgue measure and we give bounds on the measure. For
several examples we find expressions for the measure of the invariant set but
we leave open the question as to whether there are parameters for which this
measure is zero.Comment: 19 pages in Latex (with epsfig,amssymb,graphics) with 5 figures in
eps; revised version: section 2 rewritten, new example and picture adde