We have derived the angular correlation function of a sample of 2096 sources
detected in the ROSAT All Sky Survey Bright Source Catalogue, in order to
investigate the clustering properties of AGN in the local Universe. Our sample
is constructed by rejecting all known stars, as well as extended X-ray sources.
Areas with |b|<30 deg. and declination <-30 deg. are also rejected due to the
high or uncertain neutral hydrogen absorption. Cross-correlation of our sample
with the Hamburg/RASS optical identification catalogue, suggests that the vast
majority of our sources are indeed AGN. A 4.1 sigma correlation signal between
0 and 8 degrees was detected with w(theta<8 deg.)=0.025 +- 0.006. Assuming the
usual power-law form of the 2-point correlation function we find an angular
correlationlength of 0.062 degrees. Deprojection on 3 dimensions, using the
Limber's equation, yields a spatial correlation length of 6.0+- 1.6 h^-1 Mpc.
This is consistent with the AGN clustering results derived at higher redshifts
in optical surveys and suggests a comoving model for the clustering evolution.Comment: 5 pages, revised version accepted in MNRA