The gravitational lens 0957+561 is modeled utilizing recent observations of
the galaxy and the cluster as well as previous VLBI radio data which have been
re-analyzed recently. The galaxy is modeled by a power-law elliptical mass
density with a small core while the cluster is modeled by a non-singular
power-law sphere as indicated by recent observations. Using all of the current
available data, the best-fit model has a reduced chi-squared of approximately 6
where the chi-squared value is dominated by a small portion of the
observational constraints used; this value of the reduced chi-squared is
similar to that of the recent FGSE best-fit model by Barkana et al. However,
the derived value of the Hubble constant is significantly different from the
value derived from the FGSE model. We find that the value of the Hubble
constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with
and without a constraint on the cluster's mass, respectively, where K is the
convergence of the cluster at the position of the galaxy and the range for each
value is defined by Delta chi-squared = reduced chi-squared. Presently, the
best achievable fit for this system is not as good as for PG 1115+080, which
also has recently been used to constrain the Hubble constant, and the
degeneracy is large. Possibilities for improving the fit and reducing the
degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in
press (Nov. 1st issue