research

On the Polarization of H-alpha Lines Scattered by Neutral Hydrogen in Active Galactic Nuclei

Abstract

Raman scattering by atomic hydrogen converts the UV continuum around Lyβ\beta into optical continuum around Hα\alpha, and the basic atomic physics has been discussed in several works on symbiotic stars. We propose that the same process may operate in active galactic nuclei (AGN) and calculate the linear polarization of the broad emission lines Raman-scattered by a high column neutral hydrogen compnent. The conversion efficiency of the Raman scattering process is discussed and the expected scattered flux is computed using the spectral energy distribution of an AGN given by a typical power law. The high column H {\sc i} component in AGN is suggested by many observations encompassing radio through UV and X-ray ranges. When the neutral hydrogen component with a column density ∼1022cm−2\sim 10^{22} cm^{-2} is present around the active nucleus, it is found that the scattered Hα\alpha is characterized by a very broad width ∼20,000km/s\sim 20,000 km/s and that the strength of the polarized flux is comparable to that of the electron-scattered flux expected from a conventional unified model of narrow line AGN. The width of the scattered flux is mainly determined by the column density of the neutral scatterers where the total scattering optical depth becomes of order unity. The asymmetry in the Raman scattering cross section around Lyβ\beta introduces red asymmetric polarized profiles around Hα\alpha. The effects of the blended Lyβ\beta and O {\sc vi} 1034 doublet are also investigated. We briefly discuss the spectropolarimetric observations performed on the Seyfert galaxy IRAS 110548-1131 and the narrow line radio galaxy Cyg A.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019