research

Microlens Parallaxes with SIRTF

Abstract

The Space Infrared Telescope Facility (SIRTF) will drift away from the Earth at about 0.1 AU/yr. Microlensing events will therefore have different characteristics as seen from the satellite and the Earth. From the difference, it is possible in principle to measure v-tilde, the transverse velocity of the lens projected onto the observer plane. Since v-tilde has very different values for different populations (disk, halo, Large Magellanic Cloud), such measurements could help identify the location, and hence the nature, of the lenses. I show that the method previously developed by Gould for measuring such satellite parallaxes fails completely in the case of SIRTF: it is overwhelmed by degeneracies which arise from fact that the Earth and satellite observations are in different band passes. I develop a new method which allows for observations in different band passes and yet removes all degeneracies. The method combines a purely ground-based measurement of the "parallax asymmetry" with a measurement of the delay between the time the event peaks at the Earth and satellite. In effect, the parallax asymmetry determines the component of v-tilde in the Earth-Sun direction, while the delay time measures the component of v-tilde in the direction of the Earth's orbit.Comment: 21 pages plus 3 figure

    Similar works

    Available Versions

    Last time updated on 01/04/2019