In this paper we generalize the periodic unfolding method and the notion of
two-scale convergence on surfaces of periodic microstructures to locally
periodic situations. The methods that we introduce allow us to consider a wide
range of non-periodic microstructures, especially to derive macroscopic
equations for problems posed in domains with perforations distributed
non-periodically. Using the methods of locally periodic two-scale convergence
(l-t-s) on oscillating surfaces and the locally periodic (l-p) boundary
unfolding operator, we are able to analyze differential equations defined on
boundaries of non-periodic microstructures and consider non-homogeneous Neumann
conditions on the boundaries of perforations, distributed non-periodically