CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
基于支持向量机的中国上市公司财务困境预测
Authors
刘晋明
张秋水
罗林开
Publication date
30 December 2006
Publisher
Abstract
针对传统预测模型的不足,探讨支持向量机(SupportVectorsMachine,SVM)模型在中国上市公司财务困境预测中的作用。通过SVM与传统的多元线性回归(Multi Linear Regression,MLR)和Logit分析(LogitAnalysis,LA)的实证对比和模型分析,得出SVM在20组测试样本集上的平均误判率是最好的,显著优于MLR,也优于LA,证实了SVM模型用于财务困境预测的有效性和优越性。教育部厦门大学211工程电子信息技术项目(0630-E11090
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Xiamen University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.xmu.edu.cn:2288/141...
Last time updated on 10/06/2020