Numerical stress probing on a 2D model granular material

Abstract

We use DEM simulations on a simple 2D model of a granular material to measure its deformation response to small stress increments of arbitrary directions (stress probes) and assess the applicability of the classical concepts of elastoplasticity. We impose stress increments in the space of principal stresses components, to numerical specimens selected at various intermediate states along the biaxial compression path. The elastic part of the incremental response is systematically identified by building the elastic stiffness matrix of well-equilibrated configurations. Plastic strain increments are computed standing on the partition hypothesis for strain increments into elastic- and plastic parts. The domain of validity of the partition hypothesis is discussed, playing extensively with the magnitude of the stress increments, in order to identify a range in which the incremental response is homogeneous of degree 1 and the essential features of plasticity models can be observed. We investigate in particular the existence of a plastic flow rule with a clearly defined plastic flow direction and yield criterion. The robustness of these features is tested over a range of contact stiffness levels and against the dominant deformation modes (i.e., based on contact deformation or network rearrangement)

    Similar works