NGC 4314 is an early-type barred galaxy containing a nuclear ring of recent
star formation. We present CO(1-0) interferometer data of the bar and
circumnuclear region with 2.3 x 2.2 arcsec spatial resolution and 13 km/s
velocity resolution acquired at the Owens Valley Radio Observatory . These data
reveal a clumpy circumnuclear ring of molecular gas. We also find a peak of CO
inside the ring within 2 arcsec of the optical center that is not associated
with massive star formation. We construct a rotation curve from these CO
kinematic data and the mass model of Combes et al. (1992). Using this rotation
curve, we have identified the location of orbital resonances in the galaxy.
Assuming that the bar ends at corotation, the circumnuclear ring of star
formation lies between two Inner Lindblad Resonances, while the nuclear stellar
bar ends near the IILR. Deviations from circular motion are detected just
beyond the CO and H-alpha ring, where the dust lanes along the leading edge of
the bar intersect the nuclear ring. These non-circular motions along the minor
axis correspond to radially inward streaming motions at speeds of 20 - 90 km/s
and clearly show inflowing gas feeding an ILR ring. There are bright HII
regions near the ends of this inflow region, perhaps indicating triggering of
star formation by the inflow.Comment: 25 pages, uses aasms.sty. 7 Postscript figures, 12 JPEG figures.
Figures may be retrieved from
ftp://clyde.as.utexas.edu/pub/N4314COfigs.tar.g