CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Dynamic Container-based Resource Management Framework of Spark Ecosystem
Authors
A Abbas
AK Bashir
+5 more
K Choi
I Farah Siddiqui
NM Faseeh Qureshi
J Kim
DR Shin
Publication date
2 May 2019
Publisher
Doi
Cite
Abstract
© 2019 Global IT Research Institute (GIRI). Apache Spark is known for its robustness in processing large-scale datasets in a distributed computing environment. This form of efficiency is highly observing because of the direct use of Random-Access Memory (RAM) in processing its resilient distributed datasets across the ecosystem. Recently, it is observed that, the memory utilization in computing spark jobs is mainly dependent on job containers, which are closely associated to persistent storage media components. Thus, spark jobs processing relevancy is tightly coupled to the type of storage container and in case of any dynamic resource allocation, the job loses its ratio of resource computation in existing container and increases a functional issue of processing large-scale datasets in spark ecosystem. In this paper, we propose dynamic container-based resource management framework, that shifts coupled associations of job profiles to dynamically available resource containers. Also, it relieves static container allocations and presumes them as a fresh piece of resource allocation for new job profile. The experimental evaluation shows that the proposed dynamic framework reduces wastage of resource allocations and increase ecosystem performance than default job profile in spark ecosystem
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/08/2021
Supporting member
E-space: Manchester Metropolitan University's Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:e-space.mmu.ac.uk:624075
Last time updated on 20/10/2019