research

Revisiting Unsupervised Relation Extraction

Abstract

Unsupervised relation extraction (URE) extracts relations between named entities from raw text without manually-labelled data and existing knowledge bases (KBs). URE methods can be categorised into generative and discriminative approaches, which rely either on hand-crafted features or surface form. However, we demonstrate that by using only named entities to induce relation types, we can outperform existing methods on two popular datasets. We conduct a comparison and evaluation of our findings with other URE techniques, to ascertain the important features in URE. We conclude that entity types provide a strong inductive bias for URE.Comment: 8 pages, 1 figure, 2 tables. Accepted in ACL 202

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021