Chemical exfoliation of MoS2 via Li-intercalation route has led to many
desirable properties and spectacular applications due to the presence of a
metastable state in addition to the stable H phase. However, the nature of the
specific metastable phase formed, and its basic charge conduction properties
have remained controversial. Using spatially resolved Raman spectroscopy (~1
micrometer resolution) and photoelectron spectroscopy (~120 nm resolution), we
probe such chemically exfoliated MoS2 samples in comparison to a
mechanically exfoliated H phase sample and confirm that the dominant metastable
state formed by this approach is a distorted T' state with a small
semiconducting gap. Investigating two such samples with different extents of Li
residues present, we establish that Li+ ions, not only help to exfoliate
MoS2 into few layer samples, but also contribute to enhancing the relative
stability of the metastable state as well as dope the system with electrons,
giving rise to a lightly doped small bandgap system with the T' structure,
responsible for its spectacular properties.Comment: 34 pages, Main manuscript + Supplementary Materia