research

Minimum Cuts in Geometric Intersection Graphs

Abstract

Let D\mathcal{D} be a set of nn disks in the plane. The disk graph GDG_\mathcal{D} for D\mathcal{D} is the undirected graph with vertex set D\mathcal{D} in which two disks are joined by an edge if and only if they intersect. The directed transmission graph GDβ†’G^{\rightarrow}_\mathcal{D} for D\mathcal{D} is the directed graph with vertex set D\mathcal{D} in which there is an edge from a disk D1∈DD_1 \in \mathcal{D} to a disk D2∈DD_2 \in \mathcal{D} if and only if D1D_1 contains the center of D2D_2. Given D\mathcal{D} and two non-intersecting disks s,t∈Ds, t \in \mathcal{D}, we show that a minimum ss-tt vertex cut in GDG_\mathcal{D} or in GDβ†’G^{\rightarrow}_\mathcal{D} can be found in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip SS bounded by two vertical lines, Lβ„“L_\ell and LrL_r, and a collection D\mathcal{D} of disks. Let aa be a point in SS above all disks of D\mathcal{D}, and let bb a point in SS below all disks of D\mathcal{D}. The task is to find a curve from aa to bb that lies in SS and that intersects as few disks of D\mathcal{D} as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time.Comment: 11 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions