We report the discovery of a double-double radio galaxy (DDRG), J0041+3224,
with the Giant Metrewave Radio Telescope (GMRT) and subsequent high-frequency
observations with the Very Large Array (VLA). The inner and outer doubles are
aligned within about 4 deg and are reasonably collinear with the parent optical
galaxy. The outer double has a steeper radio spectrum compared with the inner
one. Using an estimated redshift of 0.45, the projected linear sizes of the
outer and inner doubles are 969 and 171 kpc respectively. The time scale of
interruption of jet activity has been estimated to be about 20 Myr, similar to
other known DDRGs. We have compiled a sample of known DDRGs, and have
re-examined the inverse correlation between the ratio of the luminosities of
the outer to the inner double and the size of the inner double, l_{in}. Unlike
the other DDRGs with l_{in} larger than about 50 kpc, the inner double of
J0041+3224 is marginally more luminous than the outer one. The two DDRGs with
l_{in} less than about a few kpc have a more luminous inner double than the
outer one, possibly due to a higher efficiency of conversion of beam energy as
the jets propagate through the dense interstellar medium. We have examined the
symmetry parameters and find that the inner doubles appear to be more
asymmetric in both its armlength and flux density ratios compared with the
outer doubles, although they appear marginally more collinear with the core
than the outer double. We discuss briefly possible implications of these
trends.Comment: Accepted for publication in MNRAS, 9 pages, 10 figure