We discuss a new technique for studying astrophysical turbulence that
utilizes the statistics of Doppler-broadened spectral lines. The technique
relates the power Velocity Coordinate Spectrum (VCS), i.e. the spectrum of
fluctuations measured along the velocity axis in Position-Position-Velocity
(PPV) data cubes available from observations, to the underlying power spectra
of the velocity/density fluctuations. Unlike the standard spatial spectra, that
are function of angular wavenumber, the VCS is a function of the velocity wave
number k_v ~ 1/v. We show that absorption affects the VCS to a higher degree
for small k_v and obtain the criteria for disregarding the absorption effects
for turbulence studies at large k_v. We consider the retrieval of turbulence
spectra from observations for high and low spatial resolution observations and
find that the VCS allows one to study turbulence even when the emitting
turbulent volume is not spatially resolved. This opens interesting prospects
for using the technique for extragalactic research. We show that, while thermal
broadening interferes with the turbulence studies using the VCS, it is possible
to separate thermal and non-thermal contributions. This allows a new way of
determining the temperature of the interstellar gas using emission and
absorption spectral lines.Comment: 27 page, 3 figures, content extended and presentation reorganized to
correspond to the version accepted to Ap