research

Particle Acceleration in Gamma-Ray Burst Jets

Abstract

Gradual shear acceleration of energetic particles in gamma-ray burst (GRB) jets is considered. Special emphasis is given to the analysis of universal structured jets, and characteristic acceleration timescales are determined for a power-law and a Gaussian evolution of the bulk flow Lorentz factor γb\gamma_b with angle ϕ\phi from the jet axis. The results suggest that local power-law particle distributions may be generated and that higher energy particles are generally concentrated closer to the jet axis. Taking several constraints into account we show that efficient electron acceleration in gradual shear flows, with maximum particle energy successively decreasing with time, may be possible on scales larger than r∼1015r \sim 10^{15} cm, provided the jet magnetic field becomes sufficiently weak and/or decreases rapidly enough with distance, while efficient acceleration of protons to ultra-high energies >1020> 10^{20} eV may be possible under a wide range of conditions.Comment: 11 pages, 3 figures; ApJ Letters accepted; final version: small typos corrected in order to match published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019