Flexion is the significant third-order weak gravitational lensing effect
responsible for the weakly skewed and arc-like appearance of lensed galaxies.
Here we demonstrate how flexion measurements can be used to measure galaxy halo
density profiles and large-scale structure on non-linear scales, via
galaxy-galaxy lensing, dark matter mapping and cosmic flexion correlation
functions. We describe the origin of gravitational flexion, and discuss its
four components, two of which are first described here. We also introduce an
efficient complex formalism for all orders of lensing distortion. We proceed to
examine the flexion predictions for galaxy-galaxy lensing, examining isothermal
sphere and Navarro, Frenk & White (NFW) profiles and both circularly symmetric
and elliptical cases. We show that in combination with shear we can precisely
measure galaxy masses and NFW halo concentrations. We also show how flexion
measurements can be used to reconstruct mass maps in 2-D projection on the sky,
and in 3-D in combination with redshift data. Finally, we examine the
predictions for cosmic flexion, including convergence-flexion
cross-correlations, and find that the signal is an effective probe of structure
on non-linear scales.Comment: 17 pages, including 12 figures, submitted to MNRA