research

A QED Model for Non-thermal Emission from SGRs and AXPs

Abstract

Previously, we showed that, owing to effects arising from quantum electrodynamics (QED), magnetohydrodynamic fast modes of sufficient strength will break down to form electron-positron pairs while traversing the magnetospheres of strongly magnetised neutron stars. The bulk of the energy of the fast mode fuels the development of an electron-positron fireball. However, a small, but potentially observable, fraction of the energy (1033\sim 10^{33} ergs) can generate a non-thermal distribution of electrons and positrons far from the star. In this paper, we examine the cooling and radiative output of these particles. We also investigate the properties of non-thermal emission in the absence of a fireball to understand the breakdown of fast modes that do not yield an optically thick pair plasma. This quiescent, non-thermal radiation associated with fast mode breakdown may account for the recently observed non-thermal emission from several anomalous X-ray pulsars and soft-gamma repeaters.Comment: 14 pages, 2 figures, submitted to MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019