In the neutron-rich internal shocks model for Gamma-ray Burts (GRBs), the
Lorentz factors (LFs) of ions shells are variable, so are the LFs of
accompanying neutron shells. For slow neutron shells with a typical LF tens,
the typical beta-decay radius reads R_{\beta,s} several 10^{14} cm, which is
much larger than the typical internal shocks radius 10^{13} cm, so their impact
on the internal shocks may be unimportant. However, as GRBs last long enough
(T_{90}>20(1+z) s), one earlier but slower ejected neutron shell will be swept
successively by later ejected ion shells in the range 10^{13}-10^{15} cm, where
slow neutrons have decayed significantly. We show in this work that ion shells
interacting with the beta-decay products of slow neutron shells can power a
ultraviolet (UV) flash bright to 12th magnitude during the prompt gamma-ray
emission phase or slightly delayed, which can be detected by the upcoming
Satellite SWIFT in the near future.Comment: 6 pages (2 eps figures), accepted for publication in ApJ