We elaborate on the analytical model of Ritter, Zhang, and Kolb (2000, A&A
360, 959) which describes the basic physics of irradiation-driven mass transfer
cycles in semi-detached compact binary systems. In particular, we take into
account a contribution to the thermal relaxation of the donor star which is
unrelated to irradiation and which was neglected in previous studies. We
present results of simulations of the evolution of compact binaries undergoing
mass transfer cycles, in particular also of systems with a nuclear evolved
donor star. These computations have been carried out with a stellar evolution
code which computes mass transfer implicitly and models irradiation of the
donor star in a point source approximation, thereby allowing for more realistic
simulations than were hitherto possible. We find that low-mass X-ray binaries
and cataclysmic variables with orbital periods less than about 6 hours can
undergo mass transfer cycles only for low angular momentum loss rates. CVs
containing a giant donor or one near the terminal age main sequence are more
stable than previously thought, but can possibly also undergo mass transfer
cycles.Comment: 6 pages, LaTeX, one eps figure, requires asp2004.sty, to appear in:
The Astrophysics of Cataclysmic Variables and Related Objects, ASP Conf.
Ser., Vol. ?, 2005, J.M. Hameury and J.P. Lasota (eds.