CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
other
Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells
Authors
Craig Donaldson
Jill Hows
+3 more
Kevin C. Kemp
Ruth Morse
Kelly Sanders
Publication date
1 January 2011
Publisher
Springer (part of Springer Nature)
Doi
Abstract
The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC. © 2011 Springer-Verlag
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Explore Bristol Research
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:research-information.bris....
Last time updated on 10/08/2019
UWE Bristol Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:uwe-repository.worktribe.c...
Last time updated on 08/06/2020
HAL: Hyper Article en Ligne
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:HAL:hal-00615417v1
Last time updated on 22/11/2024
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2Fs00277-010-...
Last time updated on 23/03/2019