CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
In silico optimization of cancer therapies with multiple types of nanoparticles applied at different times
Authors
Andrew Adamatzky
Igor Balaz
Larry Bull
Michail Antisthenis Tsompanas
Publication date
1 December 2020
Publisher
'Elsevier BV'
Doi
Abstract
© 2020 The Author(s) Background and Objective: Cancer tumors constitute a complicated environment for conventional anti-cancer treatments to confront, so solutions with higher complexity and, thus, robustness to diverse conditions are required. Alternations in the tumor composition have been documented, as a result of a conventional treatment, making an ensemble of cells drug resistant. Consequently, a possible answer to this problem could be the delivery of the pharmaceutic compound with the assistance of nano-particles (NPs) that modify the delivery characteristics and biodistribution of the therapy. Nonetheless, to tackle the dynamic response of the tumor, a variety of application times of different types of NPs could be a way forward. Methods: The in silico optimization was investigated here, in terms of the design parameters of multiple NPs and their application times. The optimization methodology used an open-source simulator to provide the fitness of each possible treatment. Because the number of different NPs that will achieve the best performance is not known a priori, the evolutionary algorithm utilizes a variable length genome approach, namely a metameric representation and accordingly modified operators. Results: The results highlight the fact that different application times have a significant effect on the robustness of a treatment. Whereas, applying all NPs at earlier time slots and without the ordered sequence unveiled by the optimization process, proved to be less effective. Conclusions: The design and development of a dynamic tool that will navigate through the large search space of possible combinations can provide efficient solutions that prove to be beyond human intuition
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UWE Bristol Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:uwe-repository.worktribe.c...
Last time updated on 22/01/2021