CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Efficient 3D object recognition via geometric information preservation
Authors
Yang Cong
Hongsen Liu
Yandong Tang
Chenguang Yang
Publication date
1 August 2019
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2019 Elsevier Ltd Accurate 3D object recognition and 6-DOF pose estimation have been pervasively applied to a variety of applications, such as unmanned warehouse, cooperative robots, and manufacturing industry. How to extract a robust and representative feature from the point clouds is an inevitable and important issue. In this paper, an unsupervised feature learning network is introduced to extract 3D keypoint features from point clouds directly, rather than transforming point clouds to voxel grids or projected RGB images, which saves computational time while preserving the object geometric information as well. Specifically, the proposed network features in a stacked point feature encoder, which can stack the local discriminative features within its neighborhoods to the original point-wise feature counterparts. The main framework consists of both offline training phase and online testing phase. In the offline training phase, the stacked point feature encoder is trained first and then generate feature database of all keypoints, which are sampled from synthetic point clouds of multiple model views. In the online testing phase, each feature extracted from the unknown testing scene is matched among the database by using the K-D tree voting strategy. Afterwards, the matching results are achieved by using the hypothesis & verification strategy. The proposed method is extensively evaluated on four public datasets and the results show that ours deliver comparable or even superior performances than the state-of-the-arts in terms of F1-score, Average of the 3D distance (ADD) and Recognition rate
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UWE Bristol Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:uwe-repository.worktribe.c...
Last time updated on 08/06/2020
Shenyang Institute of Automation,Chinese Academy Of Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.sia.cn/:173321/24801
Last time updated on 07/08/2019
Institutional Repository of Institute of Automation, CAS
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.sia.cn/:173321/24801
Last time updated on 16/09/2020