DETERMINATION OF STRATIFICATION BOUNDARY FOR FOREST AND NON FOREST MULTITEMPORAL CLASSIFICATION TO SUPPORT REDD+ IN SUMATERA ISLAN

Abstract

Multi-temporal classification is a method to determine forest and non-forest by considering a missing data, such as cloud cover using correlations value from the other data. This circumstances is frequently occured in a tropical area such as in Indonesia. To gain an optimum result of forest and non-forest classification, it is needed a stratification zone that describes the difference of vegetation condition due to different of vegetation type, soil type, climate, and land use/cover associations. This stratification zone will be useful to indicate the different biomass volume relating to carbon content for supporting the REDD+ project. The objective of this study was to determine stratification boundary by performing multi temporal  classification in Sumatera Island  using  Landsat  imagery  in  25 meter resolution and Quick Bird imagery in 0.6 meter. Rough stratification was made by considering land use/cover, DEM and landform, using visual interpretation of moderate spatial resolution of satellitedata. High spatial resolution data was also provided in some areas to increase the accuracy level of stratification zone. The stratification boundary was evaluated using forest classification indices, and it was  redetermined  to  obtain  the  final  stratification  zone. The  indices was generated  by CanonicalVariate Analysis (CVA) method, which was depend on training samples of forest and non-forest in each previous stratification zone. The amount of indices used in each zone were two or three indices depending on the separability of the forest and non-forest classification. The suitable indices used in each  zone  described forest  as  100, non-forest  as  0, and  uncertain  forest between  50-99. The  result showed 20 stratification zones in Sumatera spreading out in coastal, mountain, flat area, and group of small islands. The stratification zone will improve the accuracy of forest and non-forest classification result and their change based on multi temporal classification

    Similar works