CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
基于数字化植物表型平台(D3P)的田间小麦冠层光截获算法开发
Authors
Fred Baret
刘守阳
+3 more
朱艳
郭庆华
金时超
Publication date
1 January 2020
Publisher
Abstract
冠层光截获能力是反映作物品种间差异的重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台(D3P)模拟生成了100种冠层结构不同的小麦品种在5个生育期的三维冠层场景,记录了从原始冠层结构中提取的绿色叶面积指数(GAI)、平均倾角(AIA)和散射光截获率(FIPAR_(dif))信息作为真实值,进一步利用上述三维小麦场景开展了虚拟的激光雷达(LiDAR)模拟实验,生成了对应的三维点云数据。基于模拟的点云数据提取了其高度分位数特征(H)和绿色分数特征(GF)。最后,利用人工神经网络(ANN)算法分别构建了从不同LiDAR点云特征(H、GF和H+GF)输入到FIPAR_(dif)、GAI和AIA的反演模型。结果表明,对于GAI、AIA和FIPAR_(dif),预测精度从高到低对应的点云特征输入为GF+H> H> GF。由此可见,H特征对提高目标表型特性的估算精度起到了重要作用。输入GF+H特征,在中等测量噪音(10%)情况下,FIPAR_(dif)和GAI的估算均获得了满意精度,R~2分别为0.95和0.98,而AIA的估算精度(R~2=0.20)还有待进一步提升。本研究基于D3P模拟数据开展,算法的实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了D3P协助表型算法开发的能力,展示了高通量LiDAR数据在估算田间冠层光截获和冠层结构方面的较高潜力
Similar works
Full text
Available Versions
of Botany,Chinese Academy Of Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.ibcas.ac.cn:2S10CLM1/22...
Last time updated on 09/06/2022