Formation of the First Stars by Accretion


The process of star formation from metal-free gas is investigated by following the evolution of accreting protostars with emphasis on the properties of massive objects. The main aim is to establish the physical processes that determine the upper mass limit of the first stars. Although the consensus is that massive stars were commonly formed in the first cosmic structures, our calculations show that their actual formation depends sensitively on the mass accretion rate and its time variation. Even in the rather idealized case in which star formation is mainly determined by dot{M}acc, the characteristic mass scale of the first stars is rather uncertain. We find that there is a critical mass accretion rate dot{M}crit = 4 10^{-3} Msun/yr that separates solutions with dot{M}acc> 100 Msun can form, provided there is sufficient matter in the parent clouds, from others (dot{M}acc > dot{M}crit) where the maximum mass limit decreases as dot{M}acc increases. In the latter case, the protostellar luminosity reaches the Eddington limit before the onset of hydrogen burning at the center via the CN-cycle. This phase is followed by a rapid and dramatic expansion of the radius, possibly leading to reversal of the accretion flow when the stellar mass is about 100Msun. (abridged)Comment: 34 pages, 12 figures. ApJ, in pres

    Similar works

    Available Versions

    Last time updated on 16/03/2019