The structure of the inner edge of the accretion disk around a black hole can
be altered, if the matter inside the marginally stable orbit is magnetically
connected to the disk. In this case, a non-zero torque is exerted on its inner
edge, and the accretion efficiency ϵ can be much higher than that in
the standard accretion disk model. We explore the radiation properties of an
accretion disk at its sonic point around a black hole with a time-steady torque
exerted on the inner edge of the disk. The local structure of the accretion
flow at the sonic point is investigated in the frame of general relativity. It
is found that the accretion flow will be optically thin at its sonic point for
most cases, if the additional accretion efficiency δϵ caused by
the torque is as high as ∼10 %. The results imply that the variable torque
may trigger transitions of the flow between different accretion types.Comment: 6 pages, to appear in PASJ, Vol. 55, No. 1 (February 25, 2003