Free 2-propen-1-amine Derivative And Inclusion Complexes With β-cyclodextrin: Scanning Electron Microscopy, Dissolution, Cytotoxicity And Antimycobacterial Activity

Abstract

Inclusion complexes and physical mixtures of isomeric mixture of E/Z (50:50) of 3-(4′-bromo-[1,1′-biphenyl]-4-yl)-3-(4-bromophenyl)-N,N- dimethyl-2-propen-1-amine (BBAP) and β-cyclodextrin (β-CD) in the molar proportion of 1:1 and 1:2 were analyzed by scanning electron microscopy. The dissolution behavior of BBAP and of the inclusion complexes were also evaluated for six hours. By scanning electron microscopy (SEM), it was possible to observe an inclusion complex formed between BBAP and β-CD by co-evaporation, either in the molar proportion of 1:1 or 1:2. In the physical mixtures, no complex was observed as previously detected by physicochemical analysis. The dissolution studies showed that the inclusion complexes BBAP/β-CD 1:1 and 1:2 released respectively 49.07 ± 1.48 and 40.26 ± 3.90% of BBAP during six hours. Free BBAP was less soluble than the inclusion complex and reached 9.00 ± 0.75% of dissolution. Biological assays, such as cytotoxicity to J774 macrophages and to a permanent lung fibroblast cell line (V79), indicated that the BBAP does not exhibit any additional toxic effect with the β-CD complexes. However, the complexes were less cytotoxic to V79 cells than the free form. The BBAP/β-CD inclusion complexes were more effective (MIC) than the free compound on several mycobacteria strains. Similar behavior was observed for BBAP/β-CD complexes and rifampicin, a front-line antitubercular drug, on M. tuberculosis H37Rv growing inside J774 macrophages.155682689Bibby, D.C., Davies, N.M., Tucker, I.G., (2000) Int. J. Pharm., 197, p. 1De Souza, A.O., Sato, D.N., Aily, D.C.G., Durán, N., (1998) J. Antimicrob. Chemother., 42, p. 407Pereira, D.G., De Castro, S.L., Durán, N., (1998) Acta Tropica, 69, p. 205De Souza, A.O., Santos Júnior, R.R., Ferreira-Júlio, J.F., Rodrigues, J.A., Melo, P.S., Haun, M., Sato, D.N., Durán, N., (2001) Eur. J. Med. Chem., 36, p. 843De Souza, A.O., Hemerly, F.P., Busollo, A.C., Melo, P.S., Machado, G.M.C., Miranda, C.C., Santa-Rita, R.M., Durán, N., (2002) J. Antimicrob. Chemother., 50, p. 629De Conti, R., Gimenez, S.M.N., Haun, M., Pilli, R.A., De Castro, S.L., Durán, N., (1996) Eur. J. Med. Chem., 31, p. 915De Souza, A.O., Santos Jr., R.R., Sato, D.N., Lima, H.O.S., Andrade-Santana, M.H., Alderete, J.B., Faljoni-Alario, A., Durán, N., (2000) Abstracts of the 29 a Reunião Anual Da Sociedade Brasileira de Bioquímica, , Caxambu, BrazilHiguchi, T., Connors, K.A., (1965) Adv. Anal. Chem. Instrum., 4, p. 117Collins, L.A., Franzblau, S.G., (1997) Antimicrob. Agents Chemother., 41, p. 1004Oh, Y.K., Nix, D.E., Straubinger, R.M., (1995) Antimicrob Agents Chemother., 39, p. 2104Cingi, M.R., De Angelis, I., Fortunati, E., Reggiani, D., Bianchi, V., Tiozzo, R., Zucco, F., (1991) Toxicol. In Vitro, 5, p. 119Denizot, F., Lang, R., (1986) J. Immun. Methods, 89, p. 271Borenfreund, E., Puerner, J.A., (1984) J. Tiss. Cult. Meth., 9, p. 7Melo, P.S., Maria, S.S., Vidal, B.C., Haun, M., Durán, N., (2000) In Vitro Cell Rev. Biol. Animal, 36, p. 539Melo, P.S., Durán, N., Haun, M., (2001) Toxicology, 159, p. 135Shrivastava, R., John, G.W., Rispat, G., Chevalier, A., Massingham, R., (1991) ATLA - Alt. Lab. Anim., 19, p. 39

    Similar works