Understanding and strain-engineering wrinkle networks in supported graphene through simulations

Abstract

Wrinkle networks are ubiquitous buckle-induced delaminations in supported graphene, which locally modify the electronic structure and degrade device performance. Although the strong property-deformation coupling of graphene can be potentially harnessed by strain engineering, it has not been possible to precisely control the geometry of wrinkle networks. Through numerical simulations based on an atomistically informed continuum theory, we understand how strain anisotropy, adhesion and friction govern spontaneous wrinkling. We then propose a strategy to control the location of wrinkles through patterns of weaker adhesion. This strategy is deceptively simple, and can in fact fail in several ways, particularly under biaxial compression. However, within bounds set by the physics of wrinkling, it is possible to robustly create by strain a variety of wrinkle network geometries and junction configurations. Graphene is nearly unstrained in the planar regions bounded by wrinkles, highly curved along wrinkles, and highly stretched and curved at junctions, which can either locally attenuate or amplify the applied strain depending on their configuration. These mechanically self-assembled networks are stable under the pressure produced by an enclosed fluid and form continuous channels, opening the door to nano-fluidic applications

    Similar works