research

Current High Energy Emission from Black Holes

Abstract

Two related topics are discussed. 1. Accretion onto black holes at low and high (though not very high) rates is believed to proceed adiabatically ({\em ie} non-radiatively). It is argued that the liberated energy is carried off by an outflow, probably involving almost all of the gas that is supplied. Two dimensional, fluid, accretion disks, in which mass, angular momentum and energy are transported to the disk surface, are summarized. It is conjectured that relatively minor changes are needed to describe magnetised disks. By contrast, the disk surface physics is argued to dictate the character of the outflow. 2. Ultrarelativistic jets appear to be produced by active galactic nuclei (AGN), pulsars and γ\gamma-ray bursts (GRB). In all three cases, it is argued that the power is generated electromagnetically by a magnetic rotator, (in a DC not AC form), and transported in this manner to the emission site. A model of a relativistically expanding electromagnetic shell is described and used to provide a simple model of a GRB in which the γ\gamma-rays are produced by unstable electrical currents flowing along the rotation axis. The shell drives a relativistic blast wave into the surrounding medium with a speed that varies with latitude and whose afterglow emission may exhibit achromatic breaks. Similar processes may be at work in non-relativistic plerions like the Crab Nebula and, possibly, AGN jets. The observational implications of these two classes of model and the prospects for performing instructive, numerical experiments to elucidate them further are briefly outlined.Comment: 18 pages, 1 figure. To appear in "Current High-Energy Emission around Black Holes" Proc. 2nd KIAS Astrophysics Workshop held in Seoul, Korea (Sep 3-7 2001) ed. C.-H. Lee Singapore:World Scientifi

    Similar works