During a Type-I burst, the turbulent deflagation front may excite waves in
the neutron star ocean and upper atmosphere with frequencies, ω∼1
Hz. These waves may be observed as highly coherent flux oscillations during the
burst. The frequencies of these waves changes as the upper layers of the
neutron star cool which accounts for the small variation in the observed QPO
frequencies. In principle several modes could be excited but the fundamental
buoyant r−mode exhibits significantly larger variability for a given
excitation than all of the other modes. An analysis of modes in the burning
layers themselves and the underlying ocean shows that it is unlikely these
modes can account for the observed burst oscillations. On the other hand,
photospheric modes which reside in a cooler portion of the neutron star
atmosphere may provide an excellent explanation for the observed oscillations.Comment: 18 pages, 1 figure, substantial changes and additions to reflect
version to appear in Ap