Type systems certify program properties in a compositional way. From a bigger
program one can abstract out a part and certify the properties of the resulting
abstract program by just using the type of the part that was abstracted away.
Termination and productivity are non-trivial yet desired program properties,
and several type systems have been put forward that guarantee termination,
compositionally. These type systems are intimately connected to the definition
of least and greatest fixed-points by ordinal iteration. While most type
systems use conventional iteration, we consider inflationary iteration in this
article. We demonstrate how this leads to a more principled type system, with
recursion based on well-founded induction. The type system has a prototypical
implementation, MiniAgda, and we show in particular how it certifies
productivity of corecursive and mixed recursive-corecursive functions.Comment: In Proceedings FICS 2012, arXiv:1202.317