research

Espaces de Berkovich sur Z : \'etude locale

Abstract

We investigate the local properties of Berkovich spaces over Z. Using Weierstrass theorems, we prove that the local rings of those spaces are noetherian, regular in the case of affine spaces and excellent. We also show that the structure sheaf is coherent. Our methods work over other base rings (valued fields, discrete valuation rings, rings of integers of number fields, etc.) and provide a unified treatment of complex and p-adic spaces.Comment: v3: Corrected a few mistakes. Corrected the proof of the Weierstrass division theorem 7.3 in the case where the base field is imperfect and trivially value

    Similar works