The vision of Organic Computing addresses challenges that arise in the design
of future information systems that are comprised of numerous, heterogeneous,
resource-constrained and error-prone components or devices. Here, the notion
organic particularly highlights the idea that, in order to be manageable, such
systems should exhibit self-organization, self-adaptation and self-healing
characteristics similar to those of biological systems. In recent years, the
principles underlying many of the interesting characteristics of natural
systems have been investigated from the perspective of complex systems science,
particularly using the conceptual framework of statistical physics and
statistical mechanics. In this article, we review some of the interesting
relations between statistical physics and networked systems and discuss
applications in the engineering of organic networked computing systems with
predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum
published by Springe