Salicylaldehyde thiosemicarbazone (H2saltsc) reacts with [M(PPh3)3X2] (M = Ru, Os; X = Cl, Br) to afford complexes of type [M(PPh3)2(Hsaltsc)2], in which the salicylaldehyde thiosemicarbazone ligand is coordinated to the metal as a bidentate N,S-donor forming a four-membered chelate ring. Reaction of benzaldehyde thiosemicarbazones (Hbztsc-R) with [M(PPh3)3X2] also affords complexes of similar type, viz. [M(PPh3)2(bztsc-R)2], in which the benzaldehyde thiosemicarbazones have also been found to coordinate the metal as a bidentate N,S-donor forming a four-membered chelate ring as before. Reaction of the Hbztsc-R ligands has also been carried out with [M(bpy)2X2] (M = Ru, Os; X = Cl, Br), which has afforded complexes of type [M(bpy)2(bztsc-R)]+, which have been isolated as perchlorate salts. Coordination mode of bztsc-R has been found to be the same as before. Structure of the Hbztsc-OMe ligand has been determined and some molecular modelling studies have been carried out determine the reason for the observed mode of coordination. Reaction of acetone thiosemicarbazone (Hactsc) has then been carried out with [M(bpy)2X2] to afford the [M(bpy)2(actsc)]ClO4complexes, in which the actsc ligand coordinates the metal as a bidentate N,S-donorformingafive-membered chelate ring. Reaction of H2saltsc has been carried out with [Ru(bpy)2Cl2] to prepare the [Ru(bpy)2(Hsaltsc)]ClO4 complex, which has then been reacted with one equivalent of nickel perchlorate to afford an octanuclear complex of type [Ru(bpy)2(saltsc-H)4Ni4](ClO4)4