research

Non-Kondo mechanism for resistivity minimum in spin ice conduction systems

Abstract

We present a mechanism of resistivity minimum in conduction electron systems coupled with localized moments, which is distinguished from the Kondo effect. Instead of the spin-flip process in the Kondo effect, electrons are elastically scattered by local spin correlations which evolve in a particular way under geometrical frustration as decreasing temperature. This is demonstrated by the cellular dynamical mean-field theory for a spin-ice type Kondo lattice model on a pyrochlore lattice. Peculiar temperature dependences of the resistivity, specific heat, and magnetic susceptibility in the non-Kondo mechanism are compared with the experimental data in metallic Ir pyrochlore oxides.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions