Degenerate 3-dimensional Sklyanin algebras are monomial algebras


The 3-dimensional Sklyanin algebras, S(a,b,c), over a field k, form a flat family parametrized by points (a,b,c) lying in P^2-D, the complement of a set D of 12 points in the projective plane, P^2. When (a,b,c) is in D the algebras having the same defining relations as the 3-dimensional Sklyanin algebras are said to be "degenerate". Chelsea Walton showed the degenerate 3-dimensional Sklyanin algebras do not have the same properties as the non-degenerate ones. Here we prove that a degenerate Sklyanin algebra is isomorphic to the free algebra on u,v,w, modulo either the relations u^2=v^2=w^2=0 or the relations uv=vw=wu=0. These monomial algebras are Zhang twists of each other. Therefore all degenerate Sklyanin algebras have the same category of graded modules. A number of properties of the degenerate Sklyanin algebras follow from this observation. We exhibit a quiver Q and an ultramatricial algebra R such that if S is a degenerate Sklyanin algebra then the categories QGr(S), QGr(kQ), and Mod(R), are equivalent; neither Q nor R depends on S. Here QGr(-) denotes the category of graded right modules modulo the full subcategory of graded modules that are the sum of their finite dimensional submodules

    Similar works

    Full text


    Available Versions

    Last time updated on 05/06/2019