We present a single, common tool to strictly subsume all known cases of
polynomial time blackbox polynomial identity testing (PIT) that have been
hitherto solved using diverse tools and techniques. In particular, we show that
polynomial time hitting-set generators for identity testing of the two
seemingly different and well studied models - depth-3 circuits with bounded top
fanin, and constant-depth constant-read multilinear formulas - can be
constructed using one common algebraic-geometry theme: Jacobian captures
algebraic independence. By exploiting the Jacobian, we design the first
efficient hitting-set generators for broad generalizations of the
above-mentioned models, namely:
(1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of
the polynomials computed by the product gates (no bounded top fanin
restriction), and (2) constant-depth constant-occur formulas (no multilinear
restriction).
Constant-occur of a variable, as we define it, is a much more general concept
than constant-read. Also, earlier work on the latter model assumed that the
formula is multilinear. Thus, our work goes further beyond the results obtained
by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et
al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011),
and brings them under one unifying technique.
In addition, using the same Jacobian based approach, we prove exponential
lower bounds for the immanant (which includes permanent and determinant) on the
same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our
results reinforce the intimate connection between identity testing and lower
bounds by exhibiting a concrete mathematical tool - the Jacobian - that is
equally effective in solving both the problems on certain interesting and
previously well-investigated (but not well understood) models of computation