The mining of frequent subgraphs from labeled graph data has been studied
extensively. Furthermore, much attention has recently been paid to frequent
pattern mining from graph sequences. A method, called GTRACE, has been proposed
to mine frequent patterns from graph sequences under the assumption that
changes in graphs are gradual. Although GTRACE mines the frequent patterns
efficiently, it still needs substantial computation time to mine the patterns
from graph sequences containing large graphs and long sequences. In this paper,
we propose a new version of GTRACE that enables efficient mining of frequent
patterns based on the principle of a reverse search. The underlying concept of
the reverse search is a general scheme for designing efficient algorithms for
hard enumeration problems. Our performance study shows that the proposed method
is efficient and scalable for mining both long and large graph sequence
patterns and is several orders of magnitude faster than the original GTRACE