CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Real-time monitoring of exhaled volatiles using atmospheric pressure chemical ionization on a compact mass spectrometer
Authors
Andria Hadjithekli (7162742)
Clive Aldcroft (7162745)
+7 more
Dorota Ruszkiewicz (4116085)
Jim Reynolds (1248186)
Kayleigh L. Arthur (7162739)
Liam Heaney (5153435)
Martin Lindley (1255941)
Matthew Turner (1253217)
Paul Thomas (1249818)
Publication date
9 June 2016
Publisher
Abstract
© 2016 Future Science Ltd.Aim: Breath analyses have potential to detect early signs of disease onset. Ambient ionization allows direct combination of breath gases with MS for fast, on-line analysis. Portable MS systems would facilitate field/clinic-based breath analyses. Results & methodology: Volunteers ingested peppermint oil capsules and exhaled volatile compounds were monitored over 10 h using a compact mass spectrometer. A rise and fall in exhaled menthone was observed, peaking at 60-120 min. Real-time analysis showed a gradual rise in exhaled menthone postingestion. Sensitivity was comparable to established methods, with detection in the parts per trillion range. Conclusion: Breath volatiles were readily analyzed on a portable mass spectrometer through a simple inlet modification. Induced changes in exhaled profiles were detectable with high sensitivity and measurable in real-time
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Loughborough University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/93897...
Last time updated on 26/03/2020