Medium-induced parton energy loss, resulting from gluon exchanges between the
QCD matter and partonic projectiles, is expected to underly the strong
suppression of jets and high-pT​ hadron spectra observed in
ultra-relativistic heavy ion collisions. Here, we present the first
color-differential calculation of parton energy loss. We find that color
exchange between medium and projectile enhances the invariant mass of energetic
color singlet clusters in the parton shower by a parametrically large factor
proportional to the square root of the projectile energy. This effect is seen
in more than half of the most energetic color-singlet fragments of
medium-modified parton branchings. Applying a standard cluster hadronization
model, we find that it leads to a characteristic additional softening of
hadronic spectra. A fair description of the nuclear modification factor
measured at the LHC may then be obtained for relatively low momentum transfers
from the medium