research

The Kuramoto model with distributed shear

Abstract

We uncover a solvable generalization of the Kuramoto model in which shears (or nonisochronicities) and natural frequencies are distributed and statistically dependent. We show that the strength and sign of this dependence greatly alter synchronization and yield qualitatively different phase diagrams. The Ott-Antonsen ansatz allows us to obtain analytical results for a specific family of joint distributions. We also derive, using linear stability analysis, general formulae for the stability border of incoherence.Comment: 6 page

    Similar works