research

Ultrafast Interference Imaging of Air in Splashing Dynamics

Abstract

A drop impacting a solid surface with sufficient velocity will emit many small droplets creating a splash. However, splashing is completely suppressed if the surrounding gas pressure is lowered. The mechanism by which the gas affects splashing remains unknown. We use high-speed interference imaging to measure the air beneath all regions of a spreading viscous drop as well as optical absorption to measure the drop thickness. Although an initial air bubble is created on impact, no significant air layer persists until the time a splash is created. This suggests that splashing in our experimentally accessible range of viscosities is initiated at the edge of the drop as it encroaches into the surrounding gas

    Similar works

    Full text

    thumbnail-image

    Available Versions