Floating point operations are fast, but require continuous effort on the part
of the user in order to ensure that the results are correct. This burden can be
shifted away from the user by providing a library of exact analysis in which
the computer handles the error estimates. Previously, we [Krebbers/Spitters
2011] provided a fast implementation of the exact real numbers in the Coq proof
assistant. Our implementation improved on an earlier implementation by O'Connor
by using type classes to describe an abstract specification of the underlying
dense set from which the real numbers are built. In particular, we used dyadic
rationals built from Coq's machine integers to obtain a 100 times speed up of
the basic operations already. This article is a substantially expanded version
of [Krebbers/Spitters 2011] in which the implementation is extended in the
various ways. First, we implement and verify the sine and cosine function.
Secondly, we create an additional implementation of the dense set based on
Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order
on undecidable structures, while it was limited to decidable structures before.
This hierarchy, based on type classes, allows us to share theory on the
naturals, integers, rationals, dyadics, and reals in a convenient way. Finally,
we obtain another dramatic speed-up by avoiding evaluation of termination
proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275