In many real-world learning tasks, it is expensive to acquire a sufficient
number of labeled examples for training. This paper investigates methods for
reducing annotation cost by `sample selection'. In this approach, during
training the learning program examines many unlabeled examples and selects for
labeling only those that are most informative at each stage. This avoids
redundantly labeling examples that contribute little new information. Our work
follows on previous research on Query By Committee, extending the
committee-based paradigm to the context of probabilistic classification. We
describe a family of empirical methods for committee-based sample selection in
probabilistic classification models, which evaluate the informativeness of an
example by measuring the degree of disagreement between several model variants.
These variants (the committee) are drawn randomly from a probability
distribution conditioned by the training set labeled so far. The method was
applied to the real-world natural language processing task of stochastic
part-of-speech tagging. We find that all variants of the method achieve a
significant reduction in annotation cost, although their computational
efficiency differs. In particular, the simplest variant, a two member committee
with no parameters to tune, gives excellent results. We also show that sample
selection yields a significant reduction in the size of the model used by the
tagger