Development of the Silicon photomultiplier Elementary Cell Add-on camera
(SiECA) has provided extensive information regarding the use of SiPMs for
future cosmic ray detection systems. We present the technical aspects of sensor
readout development utilizing Citiroc ASIC chips from Weeroc controlled by a
Xilinx FPGA to process and package events from four 64 channel Hamamatsu MPPC
S13361 arrays generating 128 frame events with an integration time of 2.5ms
(parameters are based on JEM-EUSO geometry but can be easily adjusted). With
single photon counting capability, SiECA proves SiPM are viable sensors to
replace Multi-Anode PhotoMultiplier Tubes in future devices, especially when
high luminosity exposure is possible potentially damaging MAPMT based systems.
Complementary to the technical aspects, computational and analysis methods for
sensor array characterization and in depth device flat-fielding are presented.
Provided channel by channel biasing, in comparison to uniform biasing with
MAPMTs, fine tuning of operating parameters with MPPC arrays allows for
substantial improvements in detector and signal uniformity.Comment: presented at the 36th ICRC (Madison, WI; 2019