Domain growth during the kinetics of phase separation is studied following
vapor-liquid transition in a single component Lennard-Jones fluid. Results are
analyzed after appropriately mapping the continuum snapshots obtained from
extensive molecular dynamics simulations to a simple cubic lattice. For near
critical quench interconnected domain morphology is observed. A brief period of
slow diffusive growth is followed by a linear viscous hydrodynamic growth that
lasts for an extended period of time. This result is in contradiction with
earlier inclusive reports of late time growth exponent 1/2 that questions the
uniqueness of the non-equilibrium universality for liquid-liquid and
vapor-liquid transitions.Comment: 6 pages, 5 figure