We introduce a combined Restrained MD/Parallel Tempering approach to study
the difference in free energy as a function of a set of collective variables
between two states in presence of unknown slow degrees of freedom.
We applied this method to study the relative stability of the amorphous vs
crystalline nanoparticles of size ranging between 0.8 and 1.8 nm as a function
of the temperature. We found that, at variance with bulk systems, at low T
small nanoparticles are amorphous and undergo an amorphous-to-crystalline phase
transition at higher T. On the contrary, large nanoparticles recover the
bulk-like behavior: crystalline at low T and amorphous at high T