A graph on n vertices is called pancyclic if it contains a cycle of length l
for all 3 \le l \le n. In 1972, Erdos proved that if G is a Hamiltonian graph
on n > 4k^4 vertices with independence number k, then G is pancyclic. He then
suggested that n = \Omega(k^2) should already be enough to guarantee
pancyclicity. Improving on his and some other later results, we prove that
there exists a constant c such that n > ck^{7/3} suffices